
Batch PDF Encryptor Homepage.url
[{000214A0-0000-0000-C000-000000000046}]
Prop3=19,11
[InternetShortcut]
IDList=
URL=https://www.pdfzilla.com/batchpdfencryptor.html
HotKey=0

BatchPDFEncryptor.exe

bpedata.dat

Protected by Batch PDF Encryptor (Free)

bpedatac.dat

文件被 批量 PDF加密工具(免费版) 保护

data/fix-qdf
#!/usr/bin/env perl

require 5.008_001;
use warnings;
use strict;
use File::Basename;

my $whoami = basename($0);
my $dirname = dirname($0);

if ((@ARGV == 1) && ($ARGV[0] eq '--version'))
{
 exec "$dirname/qpdf", '--version';
 exit 2;
}

my $offset = 0;
my $last_offset = 0;

my $file = shift(@ARGV);
if (defined $file)
{
 open(F, "<$file") or die "$whoami: can't open $file: $!\n";
}
else
{
 $file = 'stdin';
 open(F, "<&STDIN") or die "$whoami: can't dup stdin: $!\n";
}
binmode F;
binmode STDOUT;

my $line = get_line();
if (! ((defined $line) && ($line =~ m/^%PDF-1\.\d+\b/)))
{
 die "$whoami: $file: not a pdf file\n";
}
print $line;
$line = get_line();
die "$whoami: $file: premature EOF\n" unless defined $line;
print $line;
$line = get_line();
if (! ((defined $line) && ($line =~ m/^%QDF-1.\d+\b/)))
{
 die "$whoami: $file: not a qdf file\n";
}
print $line;

my $last_obj = 0;
my @xref = ();

my $stream_start = 0;
my $stream_length = 0;
my $xref_offset = 0;
my $xref_f1_nbytes = 0;
my $xref_f2_nbytes = 0;
my $xref_size = 0;

my $cur_state = 0;
my $st_top = ++$cur_state;
my $st_in_obj = ++$cur_state;
my $st_in_stream = ++$cur_state;
my $st_after_stream = ++$cur_state;
my $st_in_ostream_dict = ++$cur_state;
my $st_in_ostream_offsets = ++$cur_state;
my $st_in_ostream_outer = ++$cur_state;
my $st_in_ostream_obj = ++$cur_state;
my $st_in_xref_stream_dict = ++$cur_state;
my $st_in_length = ++$cur_state;
my $st_at_xref = ++$cur_state;
my $st_before_trailer = ++$cur_state;
my $st_in_trailer = ++$cur_state;
my $st_done = ++$cur_state;

my @ostream = ();
my @ostream_offsets = ();
my @ostream_discarded = ();
my $ostream_idx = 0;
my $ostream_id = 0;
my $ostream_extends = "";

my $state = $st_top;
while (defined($line = get_line()))
{
 if ($state == $st_top)
 {
	if ($line =~ m/^(\d+) 0 obj$/)
	{
	 check_obj_id($1);
	 $state = $st_in_obj;
	}
	elsif ($line =~ m/^xref$/)
	{
	 $xref_offset = $last_offset;
	 $state = $st_at_xref;
	}
	print $line;
 }
 elsif ($state == $st_in_obj)
 {
	print $line;
	if ($line =~ m/^stream$/)
	{
	 $state = $st_in_stream;
	 $stream_start = $offset;
	}
	elsif ($line =~ m/^endobj$/)
	{
	 $state = $st_top;
	}
	elsif ($line =~ m,/Type /ObjStm,)
	{
	 $state = $st_in_ostream_dict;
	 $ostream_id = $last_obj;
	}
	elsif ($line =~ m,/Type /XRef,)
	{
	 $xref_offset = $xref[-1][1];
	 $xref_f1_nbytes = 0;
	 my $t = $xref_offset;
	 while ($t)
	 {
		$t >>= 8;
		++$xref_f1_nbytes;
	 }
 # Figure out how many bytes we need for ostream index.
 # Make sure we get at least 1 byte even if there are no
 # object streams.
 my $max_objects = 1;
 foreach my $e (@xref)
 {
 my ($type, $f1, $f2) = @$e;
 if ((defined $f2) && ($f2 > $max_objects))
 {
 $max_objects = $f2;
 }
 }
 while ($max_objects)
 {
 $max_objects >>=8;
 ++$xref_f2_nbytes;
 }
	 my $esize = 1 + $xref_f1_nbytes + $xref_f2_nbytes;
	 $xref_size = 1 + @xref;
	 my $length = $xref_size * $esize;
	 print " /Length $length\n";
	 print " /W [1 $xref_f1_nbytes $xref_f2_nbytes]\n";
	 $state = $st_in_xref_stream_dict;
	}
 }
 elsif ($state == $st_in_ostream_dict)
 {
	if ($line =~ m/^stream/)
	{
	 $state = $st_in_ostream_offsets;
	}
	else
	{
	 push(@ostream_discarded, $line);
	 if ($line =~ m,/Extends (\d+ 0 R),)
	 {
		$ostream_extends = $1;
	 }
	}
	# discard line
 }
 elsif ($state == $st_in_ostream_offsets)
 {
	if ($line =~ m/^\%\% Object stream: object (\d+)/)
	{
	 check_obj_id($1);
	 $stream_start = $last_offset;
	 $state = $st_in_ostream_outer;
	 push(@ostream, $line);
	}
	else
	{
	 push(@ostream_discarded, $line);
	}
	# discard line
 }
 elsif ($state == $st_in_ostream_outer)
 {
	adjust_ostream_xref();
	push(@ostream_offsets, $last_offset - $stream_start);
	$state = $st_in_ostream_obj;
	push(@ostream, $line);
 }
 elsif ($state == $st_in_ostream_obj)
 {
	push(@ostream, $line);
	if ($line =~ m/^\%\% Object stream: object (\d+)/)
	{
	 check_obj_id($1);
	 $state = $st_in_ostream_outer;
	}
	elsif ($line =~ m/^endstream/)
	{
	 $stream_length = $last_offset - $stream_start;
	 write_ostream();
	 $state = $st_in_obj;
	}
 }
 elsif ($state == $st_in_xref_stream_dict)
 {
	if ($line =~ m,/(Length|W) ,)
	{
	 # already printed
	}
	elsif ($line =~ m,/Size ,)
	{
	 my $size = 1 + @xref;
	 print " /Size $xref_size\n";
	}
	else
	{
	 print $line;
	}
	if ($line =~ m/^stream\n/)
	{
	 my $pack = "(C C$xref_f1_nbytes C$xref_f2_nbytes)";
	 print pack($pack, 0, 0, 0);
	 foreach my $x (@xref)
	 {
		my ($type, $f1, $f2) = @$x;
		$f2 = 0 unless defined $f2;
 my @f1 = ();
 my @f2 = ();
 foreach my $d ([\@f1, $f1, $xref_f1_nbytes],
 [\@f2, $f2, $xref_f2_nbytes])
 {
 my ($fa, $f, $nbytes) = @$d;
 for (my $i = 0; $i < $nbytes; ++$i)
 {
 unshift(@$fa, $f & 0xff);
 $f >>= 8;
 }
 }
		print pack($pack, $type, @f1, @f2);
	 }
	 print "\nendstream\nendobj\n\n";
	 print "startxref\n$xref_offset\n\%\%EOF\n";
	 $state = $st_done;
	}
 }
 elsif ($state == $st_in_stream)
 {
	if ($line =~ m/^endstream$/)
	{
	 $stream_length = $last_offset - $stream_start;
	 $state = $st_after_stream;
	}
	print $line;
 }
 elsif ($state == $st_after_stream)
 {
	if ($line =~ m/^\%QDF: ignore_newline$/)
	{
	 --$stream_length;
	}
	elsif ($line =~ m/^(\d+) 0 obj$/)
	{
	 check_obj_id($1);
	 $state = $st_in_length;
	}
	print $line;
 }
 elsif ($state == $st_in_length)
 {
	if ($line !~ m/^\d+$/)
	{
	 die "$file:$.: expected integer\n";
	}
	my $new = "$stream_length\n";
	$offset -= length($line);
	$offset += length($new);
	print $new;
	$state = $st_top;
 }
 elsif ($state == $st_at_xref)
 {
	my $n = scalar(@xref);
	print "0 ", $n+1, "\n0000000000 65535 f \n";
	for (@xref)
	{
	 my ($type, $f1, $f2) = @$_;
	 printf("%010d 00000 n \n", $f1);
	}
	$state = $st_before_trailer;
 }
 elsif ($state == $st_before_trailer)
 {
	if ($line =~ m/^trailer <</)
	{
	 print $line;
	 $state = $st_in_trailer;
	}
	# no output
 }
 elsif ($state == $st_in_trailer)
 {
	if ($line =~ m/^ \/Size \d+$/)
	{
	 print " /Size ", scalar(@xref) + 1, "\n";
	}
	else
	{
	 print $line;
	}
	if ($line =~ m/^>>$/)
	{
	 print "startxref\n$xref_offset\n\%\%EOF\n";
	 $state = $st_done;
	}
 }
 elsif ($state == $st_done)
 {
	# ignore
 }
}

die "$whoami: $file: premature EOF\n" unless $state == $st_done;

sub get_line
{
 my $line = scalar(<F>);
 if (defined $line)
 {
	$last_offset = $offset;
	$offset += length($line);
 }
 $line;
}

sub check_obj_id
{
 my $cur_obj = shift;
 if ($cur_obj != $last_obj + 1)
 {
	die "$file:$.: expected object ", $last_obj + 1, "\n";
 }
 $last_obj = $cur_obj;
 push(@xref, [1, $last_offset]);
}

sub adjust_ostream_xref
{
 pop(@xref);
 push(@xref, [2, $ostream_id, $ostream_idx++]);
}

sub write_ostream
{
 my $first = $ostream_offsets[0];
 my $onum = $ostream_id;
 my $offsets = "";
 my $n = scalar(@ostream_offsets);
 for (@ostream_offsets)
 {
	$_ -= $first;
	++$onum;
	$offsets .= "$onum $_\n";
 }
 my $offset_adjust = length($offsets);
 $first += length($offsets);
 $stream_length += length($offsets);
 my $dict_data = "";
 $dict_data .= " /Length $stream_length\n";
 $dict_data .= " /N $n\n";
 $dict_data .= " /First $first\n";
 if ($ostream_extends)
 {
	$dict_data .= " /Extends $ostream_extends\n";
 }
 $dict_data .= ">>\n";
 $offset_adjust += length($dict_data);
 print $dict_data;
 print "stream\n";
 print $offsets;
 foreach (@ostream)
 {
	print $_;
 }

 for (@ostream_discarded)
 {
	$offset -= length($_);
 }
 $offset += $offset_adjust;

 $ostream_idx = 0;
 $ostream_id = 0;
 @ostream = ();
 @ostream_offsets = ();
 @ostream_discarded = ();
 $ostream_extends = "";
}

data/libgcc_s_dw2-1.dll

data/libstdc++-6.dll

data/pdftk.exe

data/qpdf.exe

data/qpdf17.dll

data/qpdf3.dll

data/zlib-flate.exe

License.txt
END-USER LICENSE AGREEMENT FOR Batch PDF Encryptor and Batch PDF Encryptor Products
===
IMPORTANT PLEASE READ THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY BEFORE CONTINUING WITH THIS PROGRAM INSTALL:

Batch PDF Encryptor End-User License Agreement ("EULA") is a legal agreement between you (either an individual or a single entity) and Batch PDF Encryptor. for the Batch PDF Encryptor software product(s) identified above which may include associated software components, media, printed materials, and "online" or electronic documentation. By installing, copying, or otherwise using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. This license agreement represents the entire agreement concerning the program between you and Batch PDF Encryptor, (referred to as "licenser"), and it supersedes any prior proposal, representation, or understanding between the parties. If you do not agree to the terms of this EULA, do not install or use the SOFTWARE PRODUCT.

The SOFTWARE PRODUCT is protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.

1. GRANT OF LICENSE.
The SOFTWARE PRODUCT is licensed as follows:
(a) Installation and Use.
Batch PDF Encryptor grants you the right to install and use copies of the SOFTWARE PRODUCT on your computer running a validly licensed copy of the operating system for which the SOFTWARE PRODUCT was designed [e.g., Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10, Windows 11].
(b) Backup Copies.
You may also make copies of the SOFTWARE PRODUCT as may be necessary for backup and archival purposes.

2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.
(a) Maintenance of Copyright Notices.
You must not remove or alter any copyright notices on any and all copies of the SOFTWARE PRODUCT.
(b) Distribution.
You can distribute this free version of the SOFTWARE PRODUCT to third parties. Free versions available for download from Batch PDF Encryptor's websites may be freely distributed.
(c) Prohibition on Reverse Engineering, Decompilation, and Disassembly.
You may not reverse engineer, decompile, or disassemble the SOFTWARE PRODUCT, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation.
(d) Rental.
You may not rent, lease, or lend the SOFTWARE PRODUCT.
(e) Compliance with Applicable Laws.
You must comply with all applicable laws regarding use of the SOFTWARE PRODUCT.

3. TERMINATION
Without prejudice to any other rights, Batch PDF Encryptor may terminate this EULA if you fail to comply with the terms and conditions of this EULA. In such event, you must destroy all copies of the SOFTWARE PRODUCT in your possession.

4. COPYRIGHT
All title, including but not limited to copyrights, in and to the SOFTWARE PRODUCT and any copies thereof are owned by Batch PDF Encryptor or its suppliers. All title and intellectual property rights in and to the content which may be accessed through use of the SOFTWARE PRODUCT is the property of the respective content owner and may be protected by applicable copyright or other intellectual property laws and treaties. This EULA grants you no rights to use such content. All rights not expressly granted are reserved by Batch PDF Encryptor.

5. NO WARRANTIES
Batch PDF Encryptor expressly disclaims any warranty for the SOFTWARE PRODUCT. The SOFTWARE PRODUCT is provided As Is without any express or implied warranty of any kind, including but not limited to any warranties of merchantability, noninfringement, or fitness of a particular purpose. Batch PDF Encryptor does not warrant or assume responsibility for the accuracy or completeness of any information, text, graphics, links or other items contained within the SOFTWARE PRODUCT. Batch PDF Encryptor makes no warranties respecting any harm that may be caused by the transmission of a computer virus, worm, time bomb, logic bomb, or other such computer program. Batch PDF Encryptor further expressly disclaims any warranty or representation to Authorized Users or to any third party.

6. LIMITATION OF LIABILITY
In no event shall Batch PDF Encryptor be liable for any damages (including, without limitation, lost profits, business interruption, or lost information) rising out of Authorized Users' use of or inability to use the SOFTWARE PRODUCT, even if Batch PDF Encryptor has been advised of the possibility of such damages. In no event will Batch PDF Encryptor be liable for loss of data or for indirect, special, incidental, consequential (including lost profit), or other damages based in contract, tort or otherwise. Batch PDF Encryptor shall have no liability with respect to the content of the SOFTWARE PRODUCT or any part thereof, including but not limited to errors or omissions contained therein, libel, infringements of rights of publicity, privacy, trademark rights, business interruption, personal injury, loss of privacy, moral rights or the disclosure of confidential information.

Copyright (C) 2023 Batch PDF Encryptor & PDFZilla

